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ABSTRACT

We evaluate the bit error probability of coded lightwave systems employing

direct detection with OOK modulation, and coherent optical systems with FSK

modulation and noncoherent detection. Block codes, convolutional codes, and con-

catenated codes are investigated. For direct detection systems, both hard and soft

decoding are considered. Only hard decoding is employed in coherent optical sys-

tems.
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I. INTRODUCTION

The benefits of forward error-correction coding for radio communications in an

additive white Gaussian noise (AWGN) channel are well documented [1-3]. With

the state-of-the-art technology of Application Specific Integrated Circuits (ASIC),

both block coding and convolutional coding can be implemented at very high bit

rates. Block coding can be implemented at Gb/s data rates and convolutional coding

at hundreds of Mb/s data rates. This opens the possibility for employing FEC in

lightwave systems to compensate for the loss in the !ink budget or to relax the laser

linewidth requirement in coherent optical systems [4-5].

In this study, we explore the benefit of FEC for direct detection lightwave

systems employing on-off-keying (OOK) modulation, and coherent optical systems

employing frequency-shift keying (FSK) with envelope detection corrupted by phase

noise. Our work was derived explicitly from [19].

Of practical importance is the use of concatenated codes. Concatenated codes

allow the use of two relatively short codes with modest error-correcting capability,

one as the inner code and the other as the outer code to achieve a large coding gain.

Short codes with modest error-correcting capability simplify decoder design at very

high data rates and thus reduce the implementation cost. Concatenated codes also

allow the use of a short constraint length convolutional code as the inner code with

soft decoding and a short Reed-Solomon (RS) code with modest error-correcting

capability as the outer code. This scheme can achieve a large coding gain which

otherwise can only be achieved with a long constraint length convolutional code or

a long RS code with large error-correcting capability.

..... .. 1
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II. BIT ERROR PROBABILITY OF DIRECT
DETECTION LIGHTWAVE SYSTEMS

A. OOK MODULATION

The direct detection 00K receiver model to be analyzed is given in Fig. 1. The

photodiode detector has a responsivity 7R = ilq/h! (A/W) where rj is the quantum

efficiency which is near unity for p - i - n diodes, q = 1.6 x 10-1' C is the electron

charge, h = 6.626 x 10' J S is Planck's constant, and f is the laser frequency.

The current produced by the photodiode is amplified by a low noise amplifier and

integrated by the integrator. With soft decoding, the analog samples from the

integrator are processed by the soft decoder. With hard decoding, the integrator's

samples are first detected by a threshold detector to provide hard quantized samples

to the hard decoder.

In practice, the shot noise and dark currents produced by the photodiode

are negligible compared to the thermal noise current generated by the low noise

amplifier. Therefore, they are ignored in our analysis. The complex envelope of the

OOK lightwave signal incident upon the photodiode detection during a coded bit

interval T is

si(t) vfPb•.ej'(' i 0 , 1 ; 0 < t < T (1)

00K --am-IE DECODER DATA

Noise
n(t)

Figure 1: Coded 00K direct detection receiver structure.
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where P is peak power, 6o = Vp/(1 + p), b, = V'1/(1 + p) and p is the laser extinc-

tion ratio. The output of the integrator is

S= [it)12 + j n(t)dt (2)

where n(t) is the thermal noise current with spectral density No (A2/Hz). Substi-

tuting (1) into (2) and denote

T
N = n(t)dt (3)

we obtain

Y, = 7PTbO + N (4)

Note that N is a Gaussian random variable with zero mean and variance a2 = NoT.

We assume that the soft decoding is done by a maximum likelihood soft decoder

using the analog (unquantized) samples Y, in (4). For hard decoding, a bit decision

at the output of the threshold detector employing a threshold setting a is produced

with channel transition probability as follows:

p = 2 Pr{Yo > a} + I Pr f{Y11a}

= 1ZPTbQ2 )+Q 1ZPTb2 - (5)
2'i V7/NT 077~2V

where Q(z) is give by

Q(X)= 0 e- 22/dz (6)

The minimum value of p at the optimum threshold setting apt = IZPT(b2 + b02)/2

is

p + Q i - bI2I

Q Q('SNRV-r) (7)
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where

2 2 Tb
SNR = ZP(b• -b•) N (8)

is the signal-to-noise ratio at the threshold detector input, r is the code rate. and

Tb is the bit iLterval.

B. CODING

Assuming that the decoding is accomplished by a maximum likelihood decoder.

then the bit error probability of the decoded OOK signals employing block code

(n, k) is upper bounded by

Pb < Z n3 P, (9)
j=1i

where n. is the number of code words of weight j, and Pj is the probability that the

distance between the received sequence and a weight-j code word is less than the

distance to an all-zero code word

For a convolutional code with rate k/n, the bit error probability is upper

bounded by [1-3)
1 o

Pb < -E•W.Pj (10)

where wj is the total information weight of all code paths of weight j, d/ is the free

distance of the code, and Pj is the probability that the all-zero path is eliminated

by a path of weight j merging with it.

With hard decoding, the probability Pj in (9) and (10) is given by

y=•(i)(1 - p)j-i, j odd

1 ji, ) /2(1 _ p)-, + / ( ) p'(1 - p)-', j even

5



where p is the channel transition probability in (7). Alternatively P, in (9) can be

calculated by the following upper bound

Pb ,÷ i n ) •(1 _ p)"-j (12)

where t is the error correcting capability of the block code.

For soft decoding, the decoder selects the code word (or code path) at minimum

Euclidean distance from the received sequence. Thus, Pj in (9)-(10) is the probabil-

ity that the Euclidean distance between the received sequence Y and weight-j code

word X, is less than the Euclidean distance to the assumed transmitted all-zero

code word X0. Thus

P, = Pr {liY - X, < Ily - X0ol1} (13)

where X3 is a vector with j components, each of value IZPTb', represented bit ones,

and the remaining components, each of value IZPTbo, represented bit zeros; the vec-

tor X0 represents the assumed transmitted all-zero sequence with each component

assuming the value lZPTbg2. The received vector is Y = Xo + N where N is the zero

mean Gaussian noise vector, each component has variance a2 = NoT.

We note that by using Y = Xo + N in (12) we have

P, = Pr {IN - (X 1 - Xo)112 < [IN112}

= Pr {JINI12 + IIXJ - Xoj1 2 - 2Re {(N, Xj - Xo)) < IINI12}

= Pr {2Re {(N, Xj - Xo)} > IlX1 - xollj}

- Pr{Re{(N,,Xi 'X _ X 11)I} > •XJ-XoII} X (14)

where (N, X, - Xo) is the inner product of the two vectors N and Xi - Xo. We

remark that Re {(N, (X1 - Xo)/IIX - XoI1)} is the sum of zero mean Gaussian
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random variables, each with variance o2 = NoT, and (XAT - Xo)lllX - Xoil is a unit

length vector. Thus, it is a zero mean Gaussian variable with variance a2 = NoT.

Hence

Pi- Q (Ilx- x011)
PJ= Q(12v/bl-4•)J)

= Q(k b-N--2 oToT )

Q 21 F2__

Q(lSNRVjr) (15)

where r is the code rate and SNR is given in (8).

The above results are applied to various codes to study their effectiveness.

Figure 2 shows the bit error probability Pb versus signal-to-noise ratio SNR for

the (7, 4) Hamming code and the concatenated (7, 4)/(15, 11) Hamming/Reed-

Solomon codes with the Hamming code as the inner code. With hard decoding the

Hamming code provides very small coding gain. On the other hand, the coding gain

at PA = 10"5 is about 2.3 dB for the concatenated codes with soft decoding for the

Hamming code. The coding gain at Pb = 10-"5 is almost 3 dB as shown in Fig. 3

for the concatenated (31, 27)/(27, 23) RS/RS with hard decoding where the (27,

23) is the shortened outer code.

Figure 4 shows the performance of a convolutional code with rate 3/4 and

constraint length v = 2 and v = 5. The shorter constraint length V, = 2 is more

suitable for high data rates. The coding gain at P6 = 10-"s is about 1.5-dB for v, = 2

and 2.5 dB for v = 5. Large coding gain can be obtained with the concatenated rate

3/4 convolutional/(31, 27) RS codes with the convolutional code as the inner code

7
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as in Fig. 5. A coding gain of about 2.8 dB and 4 dB can be achieved at P6 = 10-'

with soft decoding for the convolutional code with v = 2 and v = 5, respectively.
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10",1,51 
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7ý 8 9 10 11 12

SNR (dB)

Figure 2: Coded Pb versus SNR for direct detection systems employing (7, 4
Hanuming code, (15, 11) Reed-Solomon code, and concatenated (7, 4)/ 15, 11)
Hamming/ Reed- Solomon codes.
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100 0
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uncoded
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Figure 3: Coded P6 versus SNR for direct detection systems employing (31,
27)/(27, 23) Reed- Solomon/ Reed- Solomon codes.
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Figure 4: Coded Pb versus SNR for direct detection systems employing rate 3/4
convolutional code with constraint lengths v = 2, ,5.
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Figure 5: Coded Pb versus SNR for direct detection systems employing concate-

nated rate 3/4 convolutional code/(31, 27) Reed-Solomon codes.
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III. BIT ERROR PROBABILITY OF COHERENT
OPTICAL FSK SYSTEMS WITH NONCOHERENT

DETECTION

Heterodyne and homodyne (coherent) lightwave systems are largely affected

by the combined laser phase noise of the source and local laser oscillators. The

performance deteriorates as the linewidth bit time 8Tb increases where fi (Hz) is

the combined laser linewidth of the source and local lasers and Tb (s) is the bit

time [6-10]. Coherently detected signals suffer much more from the phase noise

than noncoherently detected signals. The phase noise which can be modeled as a

Brownian motion process causes signal fading and broadens the signal spectrum.

Both effects can be compensated to a large extent by using a wider predetection

filter to pass more of the signal power and an averaging postdetection filter to

provide time diversity and thus alleviating the signal fading effect. Such a technique

was investigated in [11-12] for heterodyne lightwave systems employing ASK and

wideband FSK with noncoherent detection, and in [13] for homodyne lightwave

systems. The use of time diversity is equivalent to the use of simple repetition

codes. Since simple repetition codes can provide a good improvement as reported in

[11-12], one would naturally expect an even larger improvement when more powerful

and efficient codes are used.

In this part we investigate the performance of heterodyne lightwave systems

using wideband orthogonal FSK with noncoherent detection and error-correction

codes. We will show that coding can provide a substantial improvement in the face

of the phase noise and shot noise modeled as a zero-mean Gaussian process with

power spectral density (PSD) No/2 (W/Hz). Furthermore, coding can relax the 3Tb

13



requirement a great deal thus enabling the use of inexpensive lasers with a much

larger linewidth than that required by an uncoded system. For total generality we

consider both time diversity and coding for the system under investigation as shown

in Fig. 6. We assume that the frequency spacing Ifo - f, is much larger than 1I/T'

where T' is the integration time and is also the sampling time at the summer outputs.

The time T' is selected such that the code symbol time T = rTb = MT' where M is

a positive integer and r is the code rate. Time diversity of the postdetection filter is

modeled by summing M independent samples of a coded bit after envelope detection.

The output samples are fed to the decoder which can make a hard decision or soft

decision on the received codewords. Equivalently, each branch of the demodulator

in Fig. 6 can be replaced by a bandpass integrator followed by a square-law envelope

detector [12]. In the following section we derive the channel transition probability.

We provide a simple derivation as an alternative to the one in [12].

For mathematical convenience we adopt the envelope notation of a real signal.

Thus, the summer outputs of the signal-present upper branch and the signal-absent

lower branch in Fig. 6 with integration time T' are
M

Yo jXk + nýOk + jnook1 2  (16)
k=1

MY, E= nd + Jn,lk 12 (17)
k=1

where Zk is given by

A= f ej(t)dt (18)

and all the in-phase and quadrature noise samples ncik, nsik(i = 0, 1; k = 1, 2,..., M)

are independent and identically distributed (i.i.d.) zero-mean Gaussian random

variables (R.V.) with variance NOT/4. The laser phase noise process 0(t) can be

characterized as a zero-mean Gaussian process with variance 27rt [16], where 0 is

the combined linewidth of the source and local laser oscillators.

14



V2 cos 2rfot

t =kT'

vr2 sin 2zfot 
=

!=IDECODER

V2 cos 2r flt

vl sin r21rf~tt' 
ZHY

Figure 6: Coded coherent optical FSK receiver structure.

Since Y1 is the sum of squares of 2M i.i.d. Gaussian R.V.s with zero mean and

variance a 2 = N0T'/4, Y1 is chi-square distributed with the following probability

density function (pdf) [14]

1 (19)

(M - 1)! 2 M•a2M, YY0

On the other hand, Yo is the sum of squares of M independent Gaussian R.V.s with

variance a 2 and mean Re{Xkl and M independent Gaussian R.V.s with the same

variance a 2 but with mean I..,{Xkl. Here Re{X&,1 and I,,,{Xk} denote the real and

15



imaginary parts of Xk, respectively. Thus, Y0 is non-central chi-square distributed

with the following conditional pdf [14]

fvo(YoIv) = 1 _I1// , (NI 0 (20)
2a!2 V)a

where IM-I(.) is the (M - 1)th-order modified Bessel function of the first kind, and

v is the value assumed by the random variable V defined as

MV = E jZZ[2  (21)

k=1

The conditional channel transition probability of error is given by

p(v) =Pr{Y ŽYoý:I"Iv}

= J i: f(yi)fy0 (yojv)dy dyo (22)

The inner integral can be evaluated as follows:

00 ~ M-I (Y )\k°fys(y)dy, -" e-,,°/2, E -k (23)

Substituting (20) and (23) into (21), we obtain

p(w) = M [ x(M- 1 )12+ke-2 rIM_(2// )dx (24)Pw) (M1I)12 F. kJ

where w is the value assumed by the random variable W as defined as

w V 1 12
W 2- 2 IZk14 (24)

2a2 2 k--k=I

Using the identity [15]

x z"/ 4'eI,(2acx-,)dz - fIG'e* -' -U LP - - (26)

where
n"r _) ( )~ (7

_-0 \ -m m.
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in (24) we obtain

2M E- k=o =o k-m M!

,ew/ 2 M-1 (w/2 )n M- k +M M (28)
-2 M ! n 1 . k-. -.

n=O n

Define
M

SNR = A2Tb/2No, y = E Xk(rc/M)
k=1

where r is the code rate, c = 27r#Tb and Xk is given by

k 2
Xk(rc/M) = ejVNF''M()dt (29)

with 0(t) as a zero mean Gaussian process of variance t; we can express the condi-

tional channel transition probability in (28) as follows:

n=O kk)n

The channel transition probability is given by

p = Elp(y)} = j p(y)fy(y)dy (31)

where fM(y) is the probability density function of y and can be calculated by the

method given in (121. Figure 7 shows fy(y) for M = 2, c = 1, and c = 4 for the

uncoded case.

The transition probability p in (31) is applied to (9)-(12) to evaluate the

effectiveness of various codes for coherent optical systems. Figure 8 shows the bit

error probability Pb versus the signal-to-noise ratio SNR for M = 1 and-c = 1 (small

phase noise) with hard decoding (15, 11) and (31, 27) RS codes and (31, 27)/(27, 23)

concatenated RS/RS codes. It is seen that coding provides an excellent performance

as compared to an uncoded system, especially for the concatenated code. When

17



M = 2, that is, the bandwidth of the integrators is twice the coded rate. more

signal power passes through the demodulator and the performance of an uncoded

system as shown in Fig. 9 improves remarkably over an uncoded system for M = 1

in Fig. 8. In this situation the improvement in perfor.-,ance when RS codes are

employed is less than that in Fig. 8 but the improvement is still considerable.

especially for the concatenated (31, 27)/(27, 23) RS/RS codes. When the phase

noise is large as shown in Fig. 10 for c = 4, the use of both RS codes and larger

integrator bandwidth M = 2 achieves considerable improvement for the (15, 11) and

(31, 27) RS codes and the concatenated (31, 27)/(27, 23) RS/RS codes. Figures 11

and 12 show the performance of rate 3/4 convolutional codes with hard decoding for

M = 2, and c = 1 and c = 4, respectively. It is observed that when the constraint

length is small, v = 2, the improvement is small. The performance of rate 3/4.

v = 5 convolutional codes is slightly less than that of RS codes (15, 11) or (31, 27).

18
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100

k -.. Uncoded

---- (31,27)/(27,23) \
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Figure 9: Coded Pb versus SNR for coherent optical systems employing the (15,
11)1 and (31, 27) Reed-Solomon codes and the concatenated (31, 27)/(27, 23) Reed-
So omon/Ree-Solomon codes with M = 2 and c = 1.
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Figure 10: Coded Pb versus SNR for coherent optical systems employing the (15,
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IV. CONCLUSIONS

From our investigaion we conclude that error correction coding can improve

the performance of both direct detection and coherent optical systems. The im-

provement is considerable when concatenated codes are used. From the practical

point of view, short RS codes with modest error correcting capability can be con-

catenated to provide large coding gain and at the same time can be implemented at

high data rates. Convolutional codes with soft decision also provides good coding

gain at moderate data rates for direct detection systems. It remains to be seen

how much coding gain can be obtained with soft decision convolutional codes for

coherent optical systems.

Our contributions in this thesis are the numerical results obtained from the

analytical work in [19] as shown in equations (1-31).
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APPENDIX

The following MATHEMATICA (Stephen Wolfram, 1993) and MATLAB (The Math

Works, 1993) codes offer the formulations for:

The convol a.ion method for the determination of the probability density func-

tion

The computation of bit error probability for direct detection and coherent

detection

1. Obtaining of pdf of y by M-fold convolution

xl-[ ....... I ...................... Convolution method for finding pdf of y
................... Input of pdf of x

z2-xl; ............................. xlx2 are i.i.d
x3-0:0.02:2;
yl0.02*conv(zl,x2).; ............. 0.02 is integer as interval

..................... 2nd convolution

2. Bit error probability for direct detection

2.1 Uncoding case

function y-q(x) .......... Definition of q(x) in MATLAB
yi0.5*erfc(x/sqrt(2)) ............ Use error function defaulted in

MATLAB
snrdb-6.5:0.02:12.1;
snr-10. (snrdb*0.1);
pu-q(snr*0.5); ........... Uncode case

2.2 Concatenated convolutional hard and soft/RS coding

Mlminput('input inner convolution code order as nk,v,dfvd,vd+l.. *);

................. Need to input
tvo matrix,one for RS code(outter),
one for convolution (inner)

M2-input('input outter RS code as n,k');
nlmMl(1); kl-Ml(2); n2-M2(1); k2-M2(2);
rlkl/nl; r2sk2/n2;
m2*log2(n2+1); t2-(n2-k2)*0.5;
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rwrI.*r2;
p-mq(snrer^0.5*O.5); .. ... Equation (7)

pjuI;.............................. Solve five pj values
Hard case

pj2in(J;....................Soft case
for d-0:4
pjinO;
j-Mi (4)+d;
if rem(j,2)uum.........hc odd or even case

for i-(j+l)/2:j

end
else

for iamj/2+1:j
pjinpj+biuo(j,i)*p.-i.*(l-p).-(j-i);

end

edpja-pj+O.5*bino(j,O.5*j)*p.'-(O.5*j).*(1-p).-(O.s*j);

pjlu1pji;pjl;..............Hard case's pj
ppjj-q( CrsjY-O.5*snr*O.5);...........Soft case's pj
pj2-[pj2;ppjj);

end
pb-.conv0;.....................Solve for pb for hard case
ppbb-.conv-0....................For soft case
for hw1:5 .................... 5 is from wd to wd+4
pb-.convupb-.conv+Mi(h+4)*pj i~h,:);

edppbb-.conv-ppbb-.conv+Mi (h+4) *pj 2(h,:);

pb-.convupb-.conv/kI;
ppbb-conv-ppbb-.conv/kl;
psinl-(1-pb-.conv).'m2;.......... Solve for ps
ppss-l-(i-ppbb-.conv) . m2;
pb=O; ppbb-O;...................Solve for pb
for j-t241:n2

pb-pb+(j+t2)/n2*bino(n2,.j)*ps.^j.*(i-ps) .(n2-j);
ppbb-ppbb4(j+t2)/n2*bino(n2,j)*ppss.'j .*(i-ppss) .-(L-

end
pb-pb*(n2+i)/(2*n2);
ppbb-ppbb* (n2+i) /(2*nx2);
as-lizzspace(1,2en,51);.......... Plot statement
semilogy (unrdb(ss), pu~ss),'*',sn~rdb,pb,'--'~snrdb,ppbb)
axis([surdb~l) snrdb(Jlen) 10-(-15) 11)

3. Bit error probability for coherent detection

3.1 Uncoding case

yli.{ ................ I..............input pdf value of y
M-.2;
S-SS;.............................. Wanted S1IR
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yI-Table~y,{y,0.01761,i.9,0.02});
pluTableESum[(((S*y)/(2*M))-n)/(n!)
*Sum [Binomial EM+k-i ,k-n)

{y,O.01761,1.9,0.02 )1;
p2-Table[{yi [[ill ,pl E[i)I *yi [ [i) )},
{i,1,Length~yi)});
p3-Interpolation~p2, InterpolationOrder ->1]

p4sNlntegrate[p3[yJ ,{y,O.01
761, 1.89761})*** Conc ac on

3.2 concatenated RS/R.S coding

y11uf......{1 . For coding case's pdf of y value
For[?lul; g-1; nia3l; n2.27; k1-27; k2-23; rclukl/nl;
rc2-k2/n2; S1-10;....................Inputs of SNR and code rate
SmSl*rcl*rc2, S +=5,
ylu'Tablety,{y,0.04283,0.97T72,0.02});
pi-Table[Sum[(((S*y)/(2*M))-n)/Cn!)
*Sum [Binomial [M+k-1 ,k-n)
*(2-(-k))jk,n,M-1J) ,{n,0,M-1}j
*ExpC- (S*y/ (2*M))I/ (2-M),
{y,0.04283,0.9 7 7 72,O.O 2 });
p2=Table[(yl[i Ei),l Ep11i)*yl11ilEi) ,
f{i,1, Length [yi)})3;
p3-Interpolationtp2, InterpolationOrder -> 1);
p4aoNlntegrate[p3 [y ,{y ,0.04283,O. 96283});
Print [p41)

3.3 Convolutional coding

P ....... J1; ................ Input p
lenulength(p);
M-[4,3,2,3,15,104,540,2520,11048J;........... Matrix order as

n,k,v,df,vd,vd+i,wd42,....

r-M(2)/M(i);..........................Solve for convolution code in
matrix

pjluf ............. ;..... ...........Solve five Pj values
for d=0:4............................d i.e., df which value depend on

weight vd+4
pjiso;
pjinM(4)4d;

if rem(j,2)==1......................Check odd or even case
for iin(j41)/2:j*
pjupj+bino(j,i)*p.-i.*(1-p).-(j-i);
end
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else
for iuj/2+1:j

end
pj-pj+O.5*bino(j,0.5*j)*pV-(o.5*j).*C1..p)7 -(O.5*j);
end
pjl-Cpjl;pj];
end
pbinO;
for h-1:5
pb-pb+M(h+4)*pjl(h,:);
end
pb-pbIJ4(2);
plotCs ,pb)........................Plot statement
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